Comparative Study of QSAR/QSPR Correlations Using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression

نویسندگان

  • Xiaojun Yao
  • Annick Panaye
  • Jean-Pierre Doucet
  • Ruisheng Zhang
  • Haifeng Chen
  • Mancang Liu
  • Zhide Hu
  • Bo Tao Fan
چکیده

Support vector machines (SVMs) were used to develop QSAR models that correlate molecular structures to their toxicity and bioactivities. The performance and predictive ability of SVM are investigated and compared with other methods such as multiple linear regression and radial basis function neural network methods. In the present study, two different data sets were evaluated. The first one involves an application of SVM to the development of a QSAR model for the prediction of toxicities of 153 phenols, and the second investigation deals with the QSAR model between the structures and the activities of a set of 85 cyclooxygenase 2 (COX-2) inhibitors. For each application, the molecular structures were described using either the physicochemical parameters or molecular descriptors. In both studied cases, the predictive ability of the SVM model is comparable or superior to those obtained by MLR and RBFNN. The results indicate that SVM can be used as an alternative powerful modeling tool for QSAR studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accurate QSPR Study of O-H Bond Dissociation Energy in Substituted Phenols Based on Support Vector Machines

The support vector machine (SVM), as a novel type of learning machine, was used to develop a Quantitative Structure-Property Relationship (QSPR) model of the O-H bond dissociation energy (BDE) of 78 substituted phenols. The six descriptors calculated solely from the molecular structures of compounds selected by forward stepwise regression were used as inputs for the SVM model. The root-mean-squ...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Developing a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production

The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...

متن کامل

A preliminary experimental comparison of recursive neural networks and a tree kernel method for QSAR/QSPR regression tasks

We consider two different methods for QSAR/QSPR regression tasks: Recursive Neural Networks (RecNN) and a Support Vector Regression (SVR) machine using a Tree Kernel. Experimental results on two specific regression tasks involving alkanes and benzodiazepines are obtained for the two approaches.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2004